Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
iScience ; 25(3): 103968, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1701995

ABSTRACT

As the emergence of SARS-CoV-2 variants brings the global pandemic to new levels, the performance of current rapid antigen tests against variants of concern and interest (VOC/I) is of significant public health concern. Here, we report assessment of the Abbot BinaxNOW COVID-19 Antigen Self-Test. Using genetically sequenced remnant clinical samples collected from individuals positive for SARS-CoV-2, we assessed the performance of BinaxNOW against the variants that currently pose public health threats. We measured the limit of detection of BinaxNOW against various VOC/I in a blinded manner. BinaxNOW successfully detected the Omicron (B.1.1.529), Mu (B.1.621), Delta (B.1.617.2), Lambda (C.37), Gamma (P.1), Alpha (B.1.1.7), Beta (B.1.351), Eta (B.1.525), and P.2 variants and at low viral concentrations. BinaxNOW also detected the Omicron variant in individual remnant clinical samples. Overall, these data indicate that this inexpensive and simple-to-use, FDA-authorized and broadly distributed rapid test can reliably detect Omicron, Delta, and other VOC/I.

2.
IEEE Open J Eng Med Biol ; 2: 286-290, 2021.
Article in English | MEDLINE | ID: covidwho-1592551

ABSTRACT

Goal: Monitoring the genetic diversity and emerging mutations of SARS-CoV-2 is crucial for understanding the evolution of the virus and assuring the performance of diagnostic tests, vaccines, and therapies against COVID-19. SARS-CoV-2 is still adapting to humans and, as illustrated by B.1.1.7 (Alpha) and B.1.617.2 (Delta), lineage dynamics are fluid, and strain prevalence may change radically in a matter of months. The National Institutes of Health's Rapid Acceleration of Diagnostics (RADxSM) initiative created a Variant Task Force to assess the impact of emerging SARS-CoV-2 variants on in vitro diagnostic testing. Working in tandem with clinical laboratories, the FDA, and the CDC, the Variant Task Force uses both in silico modeling and in vitro testing to determine the effect of SARS-CoV-2 mutations on diagnostic molecular and antigen tests. Here, we offer an overview of the approach and activities of the RADx Variant Task Force to ensure test performance against emerging SARS-CoV-2 lineages.

SELECTION OF CITATIONS
SEARCH DETAIL